Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

# Triethylammonium tetraphenylborate dichloromethane solvate 

Daron E. Janzen and Kent R. Mann*

Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455-0431, USA
Correspondence e-mail: mann@chem.umn.edu

Received 19 December 2003
Accepted 6 January 2004
Online 10 February 2004
The crystal structure of the title compound, $\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}^{+}$.$\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~B}^{-} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, displays an $\mathrm{N}-\mathrm{H} \cdots \pi$ interaction between the triethylammonium cation and a phenyl ring of the tetraphenylborate anion. The distance between the ammonium H atom and the edge of this phenyl ring is 2.40 (3) $\AA$. The ammonium group and the aryl moiety are nearly perpendicular, forming an intramolecular dihedral angle of $90.4^{\circ}$. A $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction between the disordered dichloromethane solvate molecule and a phenyl ring of the tetraphenylborate anion is also present.

## Comment

Structures with strong hydrogen-bonding donors lacking traditional acceptor groups can exhibit intermolecular interactions with $\pi$ systems of aromatic rings as hydrogen-bond acceptors (Hanton et al., 1992). Two unsolvated structures of the salt triethylammonium tetraphenylborate have been determined previously (King \& Bryant, 1991; Bakshi et al., 1994), both of which contain $\mathrm{N}-\mathrm{H} \cdots \pi$ interactions with phenyl rings. In each case, the closest $\mathrm{N}-\mathrm{H} \cdots \pi$ system contact is not with the center of the aromatic ring but is rather

(I)
a clear interaction with one C atom of a phenyl ring. Malone et al. (1997) have investigated $X-\mathrm{H} \cdots \pi$ interactions with phenyl rings in a variety of structures and established six possible categories of these interactions on the basis of geometry and distance considerations. We report here the structure of the title compound, (I) (Fig. 1), a dichloromethane solvate of triethylammonium tetraphenylborate.

Molecules of (I) show intermolecular $\mathrm{N}-\mathrm{H} \cdots \pi$ interactions between ammonium atom $\mathrm{H} 1 A$ and the edge of one phenyl ring of the tetraphenylborate anion (Table 1). Fig. 2 shows a view of this interaction. Atom $\mathrm{H} 1 A$ is directed at the center of the bond between atoms C10 and C11, the distance between atom $\mathrm{H} 1 A$ and the centroid $\left(\pi_{1}\right)$ calculated from the atomic positions of atoms C10 and C11 being 2.40 (3) $\AA$. The angle formed by atom N 1 , atom $\mathrm{H} 1 A$ and $\pi_{1}$ is $172(3)^{\circ}$, and the angle formed by atom $\mathrm{H} 1 A, \pi_{1}$ and the centroid of the entire phenyl ring (calculated from the positions of atoms C7C 12 ) is $90.4^{\circ}$. The approach geometry of the NH group to the $\pi$ system of the phenyl ring is characterized as a type II interaction in the scheme of Malone et al. (1997).


Figure 1
A view of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the $50 \%$ probability level.


Figure 2
A view of the structure of (I), showing the intermolecular $\mathrm{N}-\mathrm{H} \cdots \pi_{1}$ and $\mathrm{C}-\mathrm{H} \cdots \pi_{2}$ interactions. H atoms bonded to C atoms have been omitted for clarity, except for those in the dichloromethane molecule. The atoms of the dichloromethane molecule shown are at the symmetry position ( $1-x, 1-y, 1-z$ ) relative to the cation and anion moieties shown.

The dichloromethane solvent molecule is disordered and was refined anisotropically over two similar positions. The site occupancy of atoms $\mathrm{C} 31, \mathrm{Cl} 1$ and Cl 2 is $0.80(1)$, with sites $\mathrm{C} 31^{\prime}, \mathrm{Cl1}{ }^{\prime}$ and $\mathrm{Cl} 2^{\prime}$ being occupied for the remainder. Atoms $\mathrm{H} 31 A$ and H31 $D$ of the dichloromethane molecule also show intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions with the centroid $\left(\pi_{2}\right)$ of the C13-C18 phenyl ring of the tetraphenylborate anion. The angles of the dichloromethane $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions deviate significantly from $180^{\circ}$ (Table 1). Atoms H31A and $\mathrm{H} 31 D$ lie on the vector normal to the phenyl ring at $\pi_{2}$.

## Experimental

The title compound was isolated from a reaction mixture containing $\mathrm{NEt}_{3}, \mathrm{Na}\left[\mathrm{BPh}_{4}\right],\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}\left[p\right.$-cymene is $4-i-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}-1$ -$\left.\mathrm{CH}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}\right]$ and 2-phenylpyridine in dichloromethane. Crystals were grown by slow diffusion of hexane into a dichloromethane solution of the crude reaction mixture.

## Crystal data

$\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}^{+} . \mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~B}^{-} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$
$M_{r}=506.33$
Monoclinic, $P 2_{1} / n$
$a=9.9331(17) \AA$
$b=18.258(3) \AA$
$c=15.958(3) \AA$
$\beta=104.168(3){ }^{\circ}{ }^{\circ}$
$V=2806.1(9) \AA^{3}$
$Z=4$
$D_{x}=1.199 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection
Siemens SMART PLATFORM
CCD diffractometer
$\omega$ scans
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
$T_{\text {min }}=0.936, T_{\text {max }}=0.99$
13804 measured reflections

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.069$
$w R\left(F^{2}\right)=0.140$
$S=1.03$
4946 reflections
335 parameters
H atoms treated by a mixture of independent and constrained refinement

Mo $K \alpha$ radiation
Cell parameters from 998 reflections
$\theta=2.6-25.0^{\circ}$
$\mu=0.25 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Block, pale yellow
$0.21 \times 0.08 \times 0.05 \mathrm{~mm}$

4946 independent reflections 3943 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.032$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-11 \rightarrow 11$
$k=-15 \rightarrow 21$
$l=-11 \rightarrow 19$

$$
\begin{aligned}
& w=1 /[ \sigma^{2}\left(F_{o}^{2}\right)+(0.0387 P)^{2} \\
&+4 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.47 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.23 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Hydrogen-bonding geometry ( $\left({ }^{\circ},{ }^{\circ}\right)$.
$\pi_{1}$ is the centroid calculated from the positions of atoms C 10 and C 11 , and $\pi_{2}$ is the centroid of the $\mathrm{C} 13-\mathrm{C} 18$ phenyl ring.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~N} 1-\mathrm{H} 1 A \cdots \pi_{1}$ | $0.94(3)$ | $2.40(3)$ | $3.338(3)$ | $172(3)$ |
| $\mathrm{C} 31-\mathrm{H} 31 A \cdots \pi_{2}{ }^{\mathrm{i}}$ | 0.99 | 2.50 | $3.403(5)$ | 152 |
| $\mathrm{C} 311^{\prime}-\mathrm{H} 31 D \cdots \pi_{2}{ }^{\mathrm{i}}$ | 0.99 | 2.43 | $3.347(19)$ | 153 |

Symmetry code: (i) $1-x, 1-y, 1-z$.

The coordinates of atom $\mathrm{H} 1 A$ were refined, but the displacement parameter was constrained $\left[U_{\text {iso }}(\mathrm{H} 1 A)=1.2 U_{\text {eq }}(\mathrm{N} 1)\right]$. All other H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C-H distances in the range $0.95-0.99 \AA$ and $U_{\text {iso }}(\mathrm{H})$ values of $1.2 U_{\text {eq }}(\mathrm{C})$. Attempts to refine the coordinates of the H atoms on the disordered dichloromethane molecule were unsuccessful.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

The authors acknowledge Victor G. Young Jr and the X-ray Crystallographic Laboratory in the Department of Chemistry at the University of Minnesota, USA.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SQ1147). Services for accessing these data are described at the back of the journal.

## References

Bakshi, P. K., Linden, A., Vincent, B. R., Roe, S. P., Adhikesavalu, D., Cameron, T. S. \& Knop, O. (1994). Can. J. Chem. 72, 1273-1293.
Blessing, R. (1995). Acta Cryst. A51, 33-38.
Bruker (1998). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Hanton, L. R., Hunter, C. A. \& Purvis, D. H. (1992). J. Chem. Soc. Chem. Commun. pp. 1134-1136.
King, J. A. Jr \& Bryant, G. L. Jr (1991). Acta Cryst. C47, 2249-2252.
Malone, J. F., Murray, C. M., Charlton, M. H., Docherty, R. \& Lavery, A. J. (1997). J. Chem. Soc. Faraday Trans. 93, 3429-3436.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

